JOURNAL OF APPROXIMATION THEORY 6, 231-241 (1972)

A Descent Algorithm for Linear Continuous
Chebyshev Approximation

P. D. ScorTt

Department of Electrical Engineering,
State University of New York at Buffalo, Buffalo, New York 14214

AND
J. S. THORP

Department of Electrical Engineering, Cornell University, Ithaca, NY 14850

Communicated by John R. Rice

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

This paper presents a direct, parameter-space descent algorithm for the linear
continuous Chebyshev approximation problem. After suitable definition and
characterization of edges and vertices, the search proceeds on a vertex-to-vertex
basis. The advantage of the procedure is its generality, since the approximating
set need not be a Chebyshev set, and a somewhat quicker time-to-convergence, at
least on the examples attempted, than comparison algorithms. For approximation
with non-Chebyshev sets the algorithm is defined up to a stop rule.

1. INTRODUCTION

The descent method of analysis has proved useful for a wide range of
minimization-type problems. Suppose a functional d is defined over a set
of functions characterized by a parameter n-vector A. In the direct product
space Axd a mapping M is defined which takes the space into itself in the
following way: M: (A;, d;)-(A,,;, d;,1) such that d;; < d;, with equality
if and only if d; < d; for all (A;, d;) € Axd. If an initial state is chosen,
repeated application of M may be viewed as descent along the surface of the
functional until the minimum is located.

The usefulness of this approach is largely determined by the structure
of din its parameters A. Efficient mappings have been developed for the two
special cases of strict convexity and polytope structure. In the first case
gradients and Hessians may be calculated, and in the latter case a vertex-to-
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vertex descent used. The concept of descent along edges of polytopes,
introduced by Zukovskii in 1951, has been exploited successfully in the
Chebyshev solution of finite linear inconsistent systems [1].

The linear continuous Chebyshev approximation problem possesses
neither of these special structures. While the functional is convex in the
approximating coefficients A, it is characterized by the existence of edges
(intersections of smooth regions of the functional) which are themselves
curved hypersurfaces. We will present a descent algorithm which adapts the
vertex-to-vertex and steepest descent philosophies to this setting.

2. PROBLEM STATEMENT AND NOTATION

Let f(2), $1(f),..., pa(t) be elements of C[0, 1] (the space of realvalued
continuous functions defined on the closed interval [0, 1]) and let the space
be normed by

A )
gl E}ﬁ’f]'g‘

Define the subspace K C C[0, 1] which is spanned by linear sums of the basis
set {¢,(¢)}. From the subspace select the point of minimum distance (norm)
from the point fe C[0, 1]. The approximating function is written as

LA, = 3 al0)
— AT a(),

where AT and ®(7)7 are row vectors, AT = (ay ,..., a,), ®7(£) = ($:1(£),..., Pa(2)).
The error function is then the difference
e(A, 1y =f(t) — L(A, 1)
and the solution is a point A* which satisfies
le(A*, )| <e(A, )]  forall A

(All boldface symbols indicate n-vectors. Special notational conventions,
such as that for the directional derivative, will be defined as they are needed.)

3. GENERAL APPROACH
The procedure to be followed is best introduced through an example.

Suppose it is desired to find the best Chebyshev approximation (in the
interval 0 < ¢ < 1) to the parabola f(f) = r* by the straight line
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Fic. 1. Dependence of the norm on its parameters an example.

L(4,t) = a, + ayt. Figure 1 indicates the dependence of the maximum value
of the error

d(A) Ag;g{);] [f(t) — L(A, 1),

on the approximating coefficients @, and a, . The d-axis extends out of the
page and arrows indicate the direction of the negative gradient. The minimum
value of d occurs at a; = —1/8, 4, = 1. In Region IIl, d = |1 —a; — a, |
while in Region IV d = | 4, |. In the fourth quadrant these surfaces intersect
along the straight line g, + 24, — 1 = 0, and this locus of the points of
intersection defines an edge.

Since edges occupy lower-dimensional subspaces of A X d an arbitrary
initial state is likely to fall in one of the smooth regions of the functional. The
initial step in the search is evaluation of the negative gradient at the initial
point A, and location of the nearest edge lying in that direction. The
algorithm then follows the edge in a “downhill” direction (decreasing
d) until the nearest vertex (intersection of edges) is located. Thereafter
the search proceeds from vertex to vertex, in a downhill direction, until the
minimum is attained. For the example illustrated in Fig. 1, the search should
require at most two iterations, independent of initial state.

It should be clear that a direct gradient search would prove inefficient.
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Barring a fortuitous choice of initial state, a negative gradient search applied
to Fig. 1 would take many more than two iterations, even with an optimum
choice of step size. Clearly the general convex functional is not well structured
for a gradient algorithm.

4. CALCULATION OF THE GRADIENT

As illustrated in Fig. 1, there is subspace of A X d on which the gradient
is undefined. As this subspace of edges and vertices is crucial to the search,
it is necessary not only to calculate the gradient where it exists but to develop
a simple criterion for identifying any point A; along the search as an
element of the subspace. Since edges and vertices are simply collections of
points where at least one of the partial derivatives, and thus the gradient,
fails to exist, both needs are met by the following theorem:

THEOREM 1. Let f(t), {¢:(2)}, i = 1,..., n be continuous on [0, 1] and let
e(A, , t) attain its maximum absolute value on the set T €[0, 1]. If the function
—sgn [e(Ay , 1)] du(t) is constant on T, then

of0ay || el |a, = —sgnle(Aq, )] $u(t), €T
Otherwise the kth partial derivative is undefined.

Proof. The proof will only be outlined here; for a more complete
development, see [2].

For a single-term approximation e(a, , t) = f(t) — ay$(¢) a change da in
the parameter yields a new error function

elay + da, t) = e(ay, t) — da ¢ (1). )

Defining g(a) A || e(a, t) ||, bounding (1) at the critical points of both error
curves yields the inequality

gla, + da) — glay)
v <l ¢l 2)

For fixed g, this is a bounded function of the single variable 4a and must

have at least one limit point as da — 0. The lim sup and lim inf of this

expression are the upper and lower derivatives of g(a) at a,. If they are

equal the derivative is then the common value; if not, the partial is undefined.
Define two disjoint exhaustive subsets of [0, 1]:

F(da) = {t: | elay, )] = glap) —2-|da|-| ¢}
G(da) = {t: | eay, )] < gla) —2-|dal-| $|}.
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F(4a) is a set of neighborhoods around T, the critical point set of the error
curve e(a,, t). Note that TC F(da) for all da, and F(0) = T. Absolute
bounds derived from Eq. (1) and evaluated first on G(da) and then on T
demonstrate that the critical point set 7’ of e(a, + 4a, ) is also in F(da)
for all da.

For 4a sufficiently small,

| e(@ + da, t) | = | e(ay , t) | — dasgnle(a,, D] $(t), teF(da) (3)
since F(da) is not local to any zero-crossings. Then

8@y + da) = max {|e(a, )|+ da-s(t)} @

with s(t) A — sgnle(a, , t)] ¢(¢), and

gla, + da) — g(ay) -

| e@, )| — ga) | S(,)g, da>0 (3

Aa lEmF(aA)g) Aa
— ; | e(ay, t) | — glay)
" teF(da) Aa + S(t)§, da<0 (6)
Then
gla, + da) — glay)
Aa < ,ggg;g){s(t)}, da >0 0]
> min{s(t)}, da<0 ®)

and since s() is continuous on F, passing to limits and bounding the upper
and lower derivatives,

min s(1) < Dg(@) la, < Dg(@) |s, < max s(1), ©

whence the sufficiency of Theorem 1.

To show necessity, restrict (5) and (6) to T, a subset of F(da). Then the
derivative from the left is at most the minimum and the derivative from the
right at least the maximum of s(¢).

A direct corollary of Theorem 1 will be useful:

COROLLARY. With e(A,, t)asin Theorem 1, suppose T = t,, a single point.
Then all partials of the Chebyshev norm with respect to its parameters A
exist, and

o/0ai |l el 1a, = —sgnle(Aq, 6)] Pulto). (10)
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5. EDGE DIRECTIONS

Once an edge has been attained, an edge direction must be calculated
and the edge followed “downhill” to the nearest vertex. The edge directions
are directions in which the directional derivatives exist. For instance, the
edge formed by the intersection of the two planes in three-space is a straight
line, and at any point on the line there is an unique direction on which the
directional derivative exists. This is the direction in which any step will
remain on the edge.

Theorem 2 introduces conditions for the existence of the directional
derivative in an arbitrary direction AA. First, however, a lemma is necessary.

LEMMA. Let {fi(x)} be in Cy[0, 1], j = 1,..., n, Define F(x) A max; { f;(x)}.
Suppose at some point x,, fi(xs) = fi(xp) for all i, j < n. Then a necessary
and sufficient condition for the existence of dldx F(x)|,, is

dfdx f(x)\z, = dfdx f{(x)l, (1)

for all i, j <n, and if this is the case, the common value (11) is equal to
djdx F(x)|,, -

Proof. Suppose all d/dx fi(x) x, are not equal. Then there is a function
with largest derivative at x,,

djdx fy(x)ls, = dldx f(X)ls,, I<n, (12)
and a function with smallest derivative
djdx f(X)z, < ddx f(X)a,, P<n (13)

such that the derivative (12) is strictly larger than (13). Since all functions
are continuous and all are equal at x, there is some incremental region to
the right of x, where F(x) = fi(x), x € x, +, and some region to the left
where F(x) = f{(x), x € x, —. Thus from the left,

lim 5 {(Fro + 8) — FGso)} = dld fi3) | )
and from the right,
lim 5 (G + 8) — FGxo)} = didx 409 Ly (s)

These are left- and right-hand derivatives of F(x) at x,. But d/dx
fl(x)]aco # dfdx fs(x)lxo , and the derivative of F(x) at x, is undefined.
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Assume next that all d/dxfi(x)|,, are equal. Then djdx fi(x)\s, =
djdx £)],, and

dfdx F(x)|s, = d]dx fi(X)ls, . (16)

The corollary to Theorem 1 demonstrates existence of all partial deri-
vatives of the Chebyshev norm if there is but one critical point. This result
and the above lemma will be used to develop criteria for the existence
of a directional derivative where at least one of the partials, and thus the
gradient, is not defined.

THEOREM 2. Let f(t), {b{t)} be continuous on {0, 1} and let e(A,t) =
f(t) — X0 a; $2) attain its maximum absolute value on the set T = {t;}
of nisolated points in {0, 1}. If the function —sgn{e(A, t)} AAT ®(t) is constant
on T, then the directional derivative of the Chebyshev norm in the direction
AA, to be designated D(A, AA), exists and is equal to

D(A, AA) = —sgn e(A, ) AAT &(t), teT. (17)
Otherwise D(A, AA) is undefined.

Proof. Divide [0, 1] into N disjoint exhaustive subintervals 77 each
containing one and only one critical point ¢, € T¢. The Chebyshev norms of
the error functions e(A, t)’ defined over each subinterval are then all equal
to the norm é over the whole interval [0, 1]. For any other value of the
parameter vector, say B, the norm over the whole interval will be the
maximum norm over the subintervals 77

Il e(B, 1)il = max i e(B, 1)’ . (18)

The directional derivative may be written
D(A, DAY — g£151+é{m?x le(A + 8- AA, 1Y | — &), (19)

Since there is only one critical point within each subinterval, by the previous
corollary 9/da; || e(A, t) || exists for all i and j, and all directional derivatives
of these functions exist. Using Theorem 1 to calculate the partials,

D(A, AAY = — il da; sgnie(A, 1)} (1)) (20)

= — sgn{e(A, t])} AAT ¢(tl),

where ®(1)7 = (¢4(7),..., $n(1)). By the lemma, the directional derivative,
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which is the derivative of the maximum over j of the norms, exists if and
only if

D(A, AA) = D(A, AAY, alli, j<N 21

This result may be given a simple interpretation. The problem of finding
a directional derivative is really one of determining the coefficients of the
time function AAT ®(¢) such that this function interpolates to 41 (with the
proper sign) on the critical point set 7. With 7 = ¢, a single point, this is
generally possible in any direction AA. As the number of critical points
increases, there are less and less independent directions AA in which this
interpolation is possible. When no such direction can be found, the
minimum has been obtained.

6. THE STEP SIZE: ADDITION OF CRITICAL POINTS

Suppose a step of size J is taken in the direction AA. At any point ¢ where
the error function does not change sign, the change in the absolute value
of the error function is given by

sgnfe(A, t)] - {e(A + & - AA, 1) — e(A, 1)}

22)
=8 - {—sgnle(A, )]} AAT ®(2).

Then the rate of change of the error function per unit step in the direction
AA is
r(t) = —sgnle(A, 1)] AAT ®(r). (23)

By comparison with Theorem 2, AA is a downhill edge direction if the rate
of change on all critical points is negative and equal.

Though the absolute value at the critical points of e(A, t) is decreasing
uniformly as the step size increases, a point will be reached when the in-
creasing absolute value at some other point will just equal the decreasing
value on the old critical point set. Further excursion in the direction AA
will then increase d. A new step direction must be calculated based on the
new critical point set. This intersection of edges is a vertex of the problem.

Ideally then, at each step the norm is reduced and a new critical point
added. When no further critical points may be added, the minimum has been
attained.

Digital computation of the error function makes it extremely unlikely
that an error function with more than one point of absolute maximum will
even be identified. For this reason, any point may be classed as a critical
point if it is a local absolute maximum within some e of the largest local
absolute maximum.
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Similarly, an approximation to the optimal step size may be calculated
directly from the rate of change function r. Let ©® = {#,} be the set of
local absolute maxima of e(A, ¢) which are not within € of the largest local
absolute maxima and have been excluded from the critical point set T = {¢;}.
We assume an edge direction of improvement AA has been chosen, and the
rate of change of the error function r(z,) = r < 0 is negative and constant
on T. On B, however, the error is likely to be increasing. Then suppose
r(0;) > 0. After a step of size §; the decreasing error on T will be just equal
to the increasing error at 8, (to first-order variations), where

(A, D)l — 8, - [ 7] = | e(A, 0| + 8 - | r()], 24

or

_ e 0l — e, 691

% BEIEGY

A step of size 0, is certainly to be preferred to any larger step, since for
8 > 8, the norm of the error is manifestly increasing. If we label the subset
of ® upon which #(t,) > 0, t; € O, as I, then the step

& = min {3} 25

has the effect (again, to first variations) of equating the error which is
decreasing uniformly over T with the most quickly increasing error in ® and
a single new critical point is added to T.

If € is made fairly large, the resultant step will uniformly suppress the
value of e(A, t) not only at its critical points but at other local absolute
maxima. This seems well suited to the first stages of the search, while in the
latter stage e may be decreased as the accuracy is refined and the step size is
reduced.

7. CHARACTERIZATION OF THE NEAR REGION OF A SOLUTION POINT

A stop rule for the search is necessary. If {¢,(f)} forms a Chebyshev
set [every set of n vectors ®(z;) i = 1,..., n #; 5 {; is independent] use may be
made of the following theorem (3) due to de la Vallée Poussin, here repeated
without proof:

THEOREM. Suppose there are n ordered points t, <<t, << -+ <t, such
that e(A, t;)) = —e(A, t;.,) i = 1,...,n — 1. Then the best Chebyshev error
d* satisfies

e(A, 1) | < d* <|le(A, D) (26)
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As the error function approaches n alternations these bounds draw closer, and
when the difference is small the search may be terminated.

This rule is inapplicable in the general case, since it is based on an
alteration property peculiar to approximation with Chebyshev sets. Suppose
{bt)} is not a Chebyshev set, and for some A the error function e(A, t)
attains its maximum value on the point set T = {¢, ,..., #,,}. The rate function
r(t) measures the rate of change in the absolute value of e(A, ¢) at each point
te[0, 1] due to a step in the direction AA. Then an incremental step in the
direction AA will result in a decreased norm if and only if r(z;) <0,
i = 1,..., m. The value A is a solution point if and only if, for all AA € R",
r(t;)) = 0 for some i < m.

For some problems this test for a solution point is itself a useful stop rule.
For instance, the single term approximation L(a, t) = at to the constant
f(@) =1 on [0,1] has a single critical point at the origin for 0 < a < 2.
Using Eq. (23), r(0) = 0 for all such values of a. The computation would
stop when the region 0 < a << 2 has been reached.

In problems with non-Chebyshev sets when the solution region is of lower
dimension than the parameter space the numerical search will never attain it.
In this case the near region of the minimum must be identified. Approxi-
mation of f(t) = 0 by L(a,t) = at in [0, 1] results in a rate function of +1
for a negative, —1 for a positive and zero for a = 0. Since the point ¢ = 0
is not likely to be attained using an iterative numerical procedure a more
general stop rule would be useful. Certainly an initial approximation L(a, , t)
can be improved by using a descent routine, and design considerations such
as reduction of the norm below a maximum limit used to terminate
calculation.

8. ExAMPLES USING CHEBYSHEV SETS

A descent algorithm was programmed for use on Cornell University’s CDC
1604 digital computer, as were two comparison algorithms, those due to
Stiefel and Remes (second algorithm) [3]. The results are noted in Table 1.
While none of the three algorithms is clearly most efficient, the descent
search has certain advantages. First it is more general, since both comparison
algorithms are based upon approximation with Chebyshev sets. The descent
approach has no such restriction in the general case and has been defined
up to a stop rule. Secondly it has the advantage of unifying L, approximation
theory to include its limiting case. While it has long been known that a
descent approach is very useful for 1 << p < o0, thecases p = land p = @
have been handled with separate theories. Thorp and Lewine [4] have
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TABLE I
A Comparison of Three Algorithms

Final value of parameters Best Number of Avg. Time Total
norm iterations  per iter, time
a, a, a, (sec) (sec)
Problem 1
Remes  2.841 —0.1192 —2.620 0.1016 9 3.75 24
Stiefel  2.839 —~0.1192 —2.621 0.1016 11 2.00 22
Descent  2.840 —0.1192 —2.620 0.1016 16 1.30 21
Problem 2
Remes  2.840 —0.1192 —2.620 0.1016 6 2.67 16
Stiefel  2.840 —~0.1193 —2.620 0.1016 8 2.00 16
Descent  2.840 —0.1192 —2.620 0.1016 10 1.60 16
Problem 3
Remes  0.2573 —2.922 3,520 0.2573 5 3.00 15
Stiefel  0.2573 —2.922 3520 0.2573 7 2.30 16
Descent  0.2573 ~2.922 3.520 0.2573 9 1.55 14
Problem 4
Remes  7.603 —22.23 15.08 0.4595 11 3.75 41
Stiefel  7.604 —22.22 15.08 0.4595 11 3.37 37
Descent  7.604 —22.22 15.08 0.4595 19 1.80 34

Problem 1: f(t) = 1 — e 19, {D(t)} = e, €72, e7%; A, = 0

Problem 2: f(t) = 1 — e 1% {D(2)} = e, ¥, e73; A, = (2.193, 0.5050, —2.452)
Problem 3: f(z) = tcos 2nt; {P(t)} = 1,1,t% A, = 0

Problem 4: f(t) = tcos2nt; {P(t)} = e}, e ¥, e % Ay = 0

successfully developed the L, approximation problem by means of a second-
variational descent approach, and this investigation has shown the feasibility
of a descent approach for L., .
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